To carry on a bit with yesterday’s topic—QlikTech fascinates me on two levels: first, because it is such a powerful technology, and second because it’s a real-time case study in how a superior technology penetrates an established market. The general topic of diffusion of innovation has always intrigued me, and it would be fun to map QlikView against the usual models (hype curve, chasm crossing, tipping point, etc.) in a future post. Perhaps I shall.
But I think it’s important to first explain exactly just what makes QlikView so good. General statements about speed and ease of development are discounted by most IT professionals because they’ve heard them all before. Benchmark tests, while slightly more concrete, are also suspect because they can be designed to favor whoever sponsors them. User case studies may be most convincing evidence, but resemble the testimonials for weight-loss programs: they are obviously selected by the vendor and may represent atypical cases. Plus, you don’t know what else was going on that contributed to the results.
QlikTech itself has recognized all this and adopted “seeing is believing” as their strategy: rather than try to convince people how good they are, they show them with Webinars, pre-built demonstrations, detailed tutorials, documentation, and, most important, a fully-functional trial version. What they barely do is discuss the technology itself.
This is an effective strategy with early adopters, who like to get their hands dirty and are seeking a “game changing” improvement in capabilities. But while it creates evangelists, it doesn’t give them anything beyond than own personal experience to testify to the product’s value. So most QlikTech users find themselves making exactly the sort of generic claims about speed and ease of use that are so easily discounted by those unfamiliar with the product. If the individual making the claims has personal credibility, or better still independent decision-making authority, this is good enough to sell the product. But if QlikTech is competing against other solutions that are better known and perhaps more compatible with existing staff skills, a single enthusiastic advocate may not win out—even though they happen to be backed by the truth.
What they need is a story: a convincing explanation of WHY QlikTech is better. Maybe this is only important for certain types of decision-makers—call them skeptics or analytical or rationalists or whatever. But this is a pretty common sort of person in IT departments. Some of them are almost physically uncomfortable with the raving enthusiasm that QlikView can produce.
So let me try to articulate exactly what makes QlikView so good. The underlying technology is what QlikTech calls an “associative” database, meaning data values are directly linked with related values, rather than using the traditional table-and-row organization of a relational database. (Yes, that’s pretty vague—as I say, the company doesn’t explain it in detail. Perhaps their U.S. Patent [number 6,236,986 B1, issued in 2001] would help but I haven’t looked. I don’t think QlikTech uses “associative” in the same way as Simon Williams of LazySoft, which is where Google and Wikipedia point go when you query the term.)
Whatever the technical details, the result of QlikTech’s method is that users can select any value of any data element and get a list of all other values on records associated with that element. So, to take a trivial example, selecting a date could give a list of products ordered on that date. You could do that in SQL too, but let’s say the date is on a header record while the product ID is in a detail record. You’d have to set up a join between the two—easy if you know SQL, but otherwise inaccessible. And if you had a longer trail of relations the SQL gets uglier: let’s say the order headers were linked to customer IDs which were linked to customer accounts which were linked to addresses, and you wanted to find products sold in New Jersey. That’s a whole lot of joining going on. Or if you wanted to go the other way: find people in New Jersey who bought a particular product. In QlikTech, you simply select the state or the product ID, and that’s that.
Why is this a big deal? After all, plenty of SQL-based tools can generate that query for non-technical users who don’t know SQL. But those tools have to be set up by somebody, who has to design the database tables, define the joins, and very likely specify which data elements are available and how they’re presented. That somebody is a skilled technician, or probably several technicians (data architects, database administrators, query builders, etc.). QlikTech needs none of that because it’s not generating SQL code to begin with. Instead, users just load the data and the system automatically (and immediately) makes it available. Where multiple tables are involved, the system automatically joins them on fields with matching names. So, okay, someobody does need to know enough to name the fields correctly – but that’s just all the skill required..
The advantages really become apparent when you think about the work needed to set up a serious business intelligence system. The real work in deploying a Cognos or BusinessObjects is defining the dimensions, measures, drill paths, and so on, so the system can generate SQL queries or the prebuilt cubes needed to avoid those queries. Even minor changes like adding a new dimension are a big deal. All that effort simply goes away in QlikTech. Basically, you load the raw data and start building reports, drawing graphs, or doing whatever you need to extract the information you want. This is why development time is cut so dramatically and why developers need so little training.
Of course, QlikView’s tools for building reports and charts are important, and they’re very easy to use as well (basically all point-and-click). But that’s just icing on the cake—they’re not really so different from similar tools that sit on top of SQL or multi-dimensional databases.
The other advantages cited by QlikTech users are speed and scalability. These are simpler to explain: the database sits in memory. The associative approach provides some help here, too, since it reducing storage requirements by removing redundant occurrences of each data value and by storing the data as binary codes. But the main reason QlikView is incredibly fast is that the data is held in memory. The scalability part comes in with 64 bit processors, which can address pretty much any amount of memory. It’s still necessary to stress that QlikView isn’t just putting SQL tables into memory: it’s storing the associative structures, with all their ease of use advantages. This is an important distinction between QlikTech and other in-memory systems.
I’ve skipped over other benefits of QlikView; it really is a very rich and well thought out system. Perhaps I’ll write about them some other time. The key point for now is that people need to understand QlikView using a fundamentally different database technology, one that hugely simplifies application development by making the normal database design tasks unnecessary. The fantastic claims for QlikTech only become plausible once you recognize that this difference is what makes them possible.
(disclaimer: although Client X Client is a QlikTech reseller, they have no responsibility for the contents of this blog.)
Friday, 3 August 2007
What Makes QlikTech So Good?
Posted on 10:40 by Unknown
Posted in business intelligence, qliktech, qlikview, software selection, vendor evaluation
|
No comments
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment